Double domination in lexicographic product graphs
نویسندگان
چکیده
منابع مشابه
Rainbow domination in the lexicographic product of graphs
A k-rainbow dominating function of a graph G is a map f from V (G) to the set of all subsets of {1, 2, . . . , k} such that {1, . . . , k} = ⋃ u∈N(v) f(u) whenever v is a vertex with f(v) = ∅. The k-rainbow domination number of G is the invariant γrk(G), which is the minimum sum (over all the vertices of G) of the cardinalities of the subsets assigned by a k-rainbow dominating function. We focu...
متن کاملTotal double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
متن کاملLexicographic Product of Extendable Graphs
Lexicographic product G◦H of two graphs G and H has vertex set V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). If every matching of G of size k can be extended to a perfect matching in G, then G is called k-extendable. In this paper, we study matching extendability in lexicographic product of graphs. The main result is that the l...
متن کاملPower Domination in Product Graphs
The power system monitoring problem asks for as few as possible measurement devices to be put in an electric power system. The problem has a graph theory model involving power dominating sets in graphs. The power domination number γP (G) of G is the minimum cardinality of a power dominating set. Dorfling and Henning [2] determined the power domination number of the Cartesian product of paths. I...
متن کاملExact double domination in graphs
In a graph a vertex is said to dominate itself and all its neighbours. A doubly dominating set of a graph G is a subset of vertices that dominates every vertex of G at least twice. A doubly dominating set is exact if every vertex of G is dominated exactly twice. We prove that the existence of an exact doubly dominating set is an NP-complete problem. We show that if an exact double dominating se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2020
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.03.045